
Journal of Statistical Physics, Vol. 86, Nos. I/2, 1997 

Hypergeometric Series in a Series Expansion of the 
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The asymmetric directed-bond percolation (ADBP) problem with an asym- 
metry parameter k is introduced and some rigorous results are given concerning 
a series expansion of the percolation probability on the square lattice. It is 
shown that the first correction term d,,,llk) is expressed by Gauss' hyper- 
geometric series with a variable k. Since the ADBP includes the ordinary direc- 
ted bond percolation as a special case with k = I, our results give another proof 
for the Baxter-Guttmann's conjecture that d,,.~(1) is given by the Catalan 
number, which was recently proved by Bousquet-M~lou. Direct calculations on 
tinite lattices are performed and combining them with the present results deter- 
mines the first 14 terms of the series expansion for percolation probability of the 
ADBP on the square lattice. The analysis by Dlog Pad+ approximations 
suggests that the critical value depends on k, while asymmetry does not change 
the critical exponent t / o f  percolation probability. 

KEY WORDS:  Directed bond percolation; percolation probability; asym- 
metry; series expansion; correction terms; hypergeometric series. 

1. I N T R O D U C T I O N  

The bond percolation problem on the directed square lattice, introduced by 
Broadbent.and Hammersley, ~ll has been studied by many authors t2-~2~ and 
yet there is no exact solution. Baxter and Guttmann ~9~ estimated the 
percolation probability by extrapolation from finite-lattice calculations. 

Department of Physics, Faculty of Science and Engineering, Chuo University, Kasuga, 
Bunkyo-ku, Tokyo 112, Japan. 

-' Department of Mechanical and Intelligent Engineering, Himeji Institute of Technology, 
2167, Shosha, Himeji, Hyogo 671-22, Japan. 

37 

0022-4715~97/0100-0037512.50/0 ( '  1997 Plenum Publishing Corporation 



38 Katori e t  al.  

Consider a down-pointing triangular region in the square lattice with a 
linear size n, V ~ defined as 

V~ O<~y<~n-1, -y<~x<~y} (1.1) 

which has n(n-  1) bonds. We assume that each bond is either open with 
probability p or closed with probability q = 1 - p .  We say "there is an open 
path from (xo, Yo) to (x .... yo+m)" for m~>l if there is a sequence 
(xo, Y0), ( x ~ , y o + l )  ..... (x .... y o + m )  of sites in V ~ such that for each 
O<~k<~m- 1 the bond from (xk, yo+k) to (xk+[,  yo+k+ 1) is open. We 
regard two sites as connected if there is at least one open path between 
them. Let P,(q) be the probability that the origin (0, 0) is connected to at 
least one site in the top row in V, ~ and express P,,(q) as a polynomial of 
q. Baxter and Guttmann 19) calculated P,(q) for 1 ~< n ~< 29 and found that 
the difference between P,,(q) and P,+](q) is of order q"+] and can be 
expressed as 

P,,(q)-P,+,(q)=q" ~ d,,,td ~ (1.2) 
I>11 

with non-zero coefficients { d,,, i}, which are called the correction terms. This 
observation means the convergence of the polynomial P.(q) to a limit as 
a formal power series of q and this limit will define the bond percolation 
probability P(q) for the infinite directed square lattice V~ w,,=ol~ V,0. 
Moreover, they gave the following conjectures for the first and the second 
correction terms, d.. ~ and d,,, 2: 

d,,.i =c,, ,  d,,.2=2c,,--c,,+l (1.3) 

where c, is the Catalan number defined by t~3, 14) 

(2n)! 
e. = (1.4) 

n! (n + 1)! 

Recently Bousquet-M61ou c~5~ proved these conjectures by discussing the 
relation between the correction terms and the numbers of compact 
animals (16) of appropriate types on V ~ Therefore the calculation by Baxter 
and Guttmann up to n = 29 gives correctly the first 31 coefficients in the 
series expansion of P(q). Quite recently Jensen and Gut tmann obtained 
the series P39(q) and determined the 41 terms of the series for P(q) using 
the results of Bousquet-M610u. t~5) It should be noted that Baxter and 
Guttmann c9) and Jensen and Guttmann 1~2) have proposed the formulas 
giving higher order correction terms; however, they remain to be proved. 
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In a previous paper ~17~ we gave another proof for (1.2) and (1.3). We 
considered the probability P ..... that the origin (0, 0) is connected to 
exactly m sites in the top row in V ~ and studied the polynomial in the form 

P ...... = ~  a ....... i p , , i , , - I ) - i q i  (1.5) 
i 

Since P , , - P , , + ~ = Z ' , ' , , = ~  P ...... q2,, by definition, it is easy to show that (1.2) 
is equivalent to the statement that 

a ....... ; = 0  for m~>l and i + m < < , n - 1  (1.6) 

and we find that 

d , , . i = a , , . t  . . . .  t (1.7) 

d , , . 2=a , , . t . , ,  + a , , + l . l . , , - - ( n 2 - - 2 n +  3 ) a , , . i  . . . .  l 

We proved (1.6) and derived the following results: 1~71 

a , t .  i i i .  i i  - t11 ~ b , ,  + , , ,  _ I .  II  - -  II1 

a . . . . . . . . . . . .  +1 = {(n--  1)2-- (m--  1)} a ............. - - ( m + l ) a  ...... +1 . . . . . . . .  i 

for l < ~ m < ~ n  (1.8) 

where b ...... is a ballot number defined by I ~4j 

b . -n+l-m(n+mm)n+l (1.9) 

Since c,, = b ...... (1.3) is derived from (1.8). That is, we have generalized the 
statements given by Baxter and Guttmann 19~ and Bousquet-M~lou ~tS) and 
showed that the Catalan numbers appearing in the correction terms are 
special cases of the ballot numbers in the polynomials P ...... . 

In the present paper, we report other generalizations. We consider the 
asymmetric directed-bond percolation problem parametrized by k, which 
was first studied by Domany and Kinzel/3~ It includes the usual symmetric 
case as k = 1. We consider P ...... as a polynomial of q with coefficients which 
are function's of k. We show that the coefficient a ............. can be expressed 
using Gauss's hypergeometric series in the form F( - ( n  --m), - n ,  m + 1; k). 
As a corollary, we determine the first correction term d,,. ~ for any n >/1. 
The ballot numbers (1.9) and the Catalan numbers (1.4) are special values 
at k = 1 of the expressions using hypergeometric series. 

The paper is organized as follows. In Section 2, we first define the 
asymmetric directed-bond percolation probability P ( q ; k )  and give a 
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lemma which corresponds to the statement (1.6). Then we give a theorem 
and its corollaries. The proof of the lemma is given in Appendix A and the 
proof of the main theorem is given in Section 3 together with Appendix B. 
Applications of the present results and concluding remarks are given in 
Section 4. 

2, A S Y M M E T R I C  PERCOLATION PROBLEM AND RESULTS 

We consider the asymmetric directed-bond percolation (ADBP) 
problem ~3~ on V~ U,,~I vii, where V ~ is defined by (1.1). First we con- 
sider a finite lattice V,~ 2 <~n < or. Let bZ(x, y) [resp. b"(x, y)]  denote the 
bond between a site (x, y) and a site ( x -  1, y +  1) [resp. ( x +  I, y +  1)]. 
The n ( n - 1 )  bonds in vii are classified into two sets, Bl ,={b ' (x ,y) :  
(x, y ) � 9  V'},_ i} and B',; = {b"(x, y): (x, y ) � 9  vii_ ,}. In other words, B~, (resp. 
B',~) denotes a set of bonds connecting nearest neighbor pairs of sites in V ~ 

_ _  / which go up and to the left (resp. right). Each bond in B,, =B,,  wB',~ is 
either open or closed with a given probability independently of other 
bonds. Here we introduce asymmetry between the probability to close 
bonds in B~, and that to close bonds in B',I. We assume that each bond in 
BI, (resp. B',~) becomes closed with probability q (resp. kq). Without loss of 
generality, we can assume that 0 ~< k <~ 1. When all bonds in B,, are deter- 
mined whether to be open or closed, we say that a bond configuration is 
given. For each bond configuration on B,,, open paths are defined in the 
same way as for the symmetric case (k = 1 ) explained in Section 1 and two 
sites in V~, ), are regarded as connected iff there is at least one open path 
between these two sites. Let V~, I, be a set of the sites in the top row in V, ~ 

VC, ~, = {(x, n -  1): (x, n -  1) �9 V~},} (2.1) 

We consider all the open paths starting from the origin (0, 0) and define for 
17 >~ 2 

._45,=the number of sites in P,, connected to (0, 0) (2.2) 

and define the probability 

P ...... (q;k)=P(~4~,=m) (2.3) 

We let Pt .... =6,,,.~. By definition, P ...... ( q ; k ) = 0  for m < 0  or m>n.  Let 

P,,(q;k)= ~ P ...... (q;k)  (2.4) 
m = I 
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Since P,,(q; k) is nonincreas ing in n for any given q and k, it has a limit 

e(q; k) = lim e,(q; k) (2.5) 
s# ~ o-j 

which is called the percola t ion probabi l i ty  of  the ADBP.  We can prove  that  
P(q; k) is nonincreasing in q for each k and the critical value qc(k) can be 
defined as 

q,.(k) = inf{q ~ [0, 1]: P(q; k)=0} 

= sup{ q ~ [0, 1 ]: P(q; k) > 0} (2.6) 

for 0 ~<k ~< 1. The  A D B P  prob lem is to calculate the percola t ion prob-  
ability (2.5) and to determine q,.(k). For  the case k - - 0 ,  exact results were 
repor ted by D o m a n y  and Kinzel. ~3~ 

The  probabi l i ty  P ...... (q; k) is given as a po lynomia l  of  q as 

P ...... ( q ; k ) =  ~ a ....... i ( k ) q '  (2.7) 
i ~ > O  

where {a ....... Ak)} are polynomials  of  k. We can prove  the following 
lemma.  

I . e m m a  1. Fo r  m/> 1, 

a ....... A k ) = 0  if i < ~ n - m - I  (2.8) 

We give the p r o o f  in Appendix  A. Let 

( s ) a ...... (k) = a ....... i . . . . .  ~ +.~.(k) (2.9) 

for 1 ~<m ~<n. Then (2.7) can be writ ten as 

P ...... ( q ; k ) = q  ...... ~ ~"1 q" a ...... (k) for m/> 1 (2.10) 
s ~ > O  

By definition, we have 

P,,(q;k)--P,,+~(q;k)= ~ P ...... (q;k)k'"q 2''' 

Combin ing  (2.10) and (2.11 ) gives 

(2.11) 

P,,(q;k)-P,+t(q;k)=q" ~. d,,.~(k)q ~ (2.12) 
1>11 
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d , . , (k )=  ~ k"'a~,~7,'"'(k) (2.13) 
m = I 

In particular the first correction term is 

d,,. ,r ka',~ (2.14) 

Now we state the main theorem in the present paper. 

T h e o r e m  2. For 1 ~< m-%< n, 

,0, ( n - - I )  
a ...... ( k ) =  m - 1  F(-(n-m),-n,m+l;k)  (2.15) 

Here F(a, fl, y; z) is Gauss' hypergeometric series, which is defined as 

(~),,(p),, z" 
F(~, fl, ~;z) = (2.16) 

,,=o ()'),, n! 

where (~),,=~(0~+ 1 ) . - - ( ~ + n -  1) for n~> 1 and (00o= 1. Since Gauss' 
summation theorem 

r(y) r() , -~-p)  F(c~,I~,~,; 1)= (2.17) 
r(~,-~)  r (~- /~)  

is valid if ~ ,  > 0, 9 l ( y - a - f l )  >0 ,  we can see that 

2m ( 2 n - 1 )  
a"~ 1 ) = ~ \n  + m - 1 (2.18) 

and we have the following corollary, which was given in Theorem 2 of 
ref. 17. 

Corollary 3. In particular, for k =  1 

a~Ol " )  =b,,+ .... (2.19) 
t l ,  t ; ;  ~ 1 | ,  l / - -  i i 1  

where b ...... is the ballot number defined by (1.9). 

We have given a simple relation (2.14), and thus the next corollary is 
derived from Theorem 2. 
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C o r o l l a r y  4. Let d,,. i(k) be the first correction term for the ADBP 
with a parameter k. Then 

d,,. ~(k) = kF(  - ( n -  1 ), - n ,  2; k) (2.20) 

for n >~ 1. In particular, for the symmetric case, 

d , , . l ( 1 ) = c , ,  (2.21) 

where c,, is the Catalan number defined by (1.4). 

3. P R O O F  OF T H E O R E M  2 

We can find that "~) a ...... (k) with 1 ~< m ~< n is given by the solution of the 
difference equation 

0~,,+a .... =k0~ ...... + t + ( l + k ) 0 c  ...... + ~  ....... i 

with the boundary conditions 

m > ~ n +  l 

and 

oL ...... = 0  if m~<0 or 

The derivation is given in Appendix B. 
It should be noticed that (3.1)-(3.3) give 

..... = 1 Vn >/1 

We introduce the generating function as 

�9 (x, y; k) = 
I t  = I 111 ~ I 

It is easy to obtain 

with 

for n~> 1 (3.1) 

(3.2) 

(3.3) 

(3.4) 

~,,. ,,, x"p'" (3.5) 

�9 (x ,  y ; k ) =  
x y ( k a ( x ; k ) - y )  

x(y+ 1 ) ( y + k ) - y  
(3.6) 

a(x;/~)= ~ ~,,.,x" 
n -  I 

(3.7) 
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by the condition (3.4) as 
explained below. Let 

r y; k) = Z r k) y" (3.8) 
m ~  I 

Then by (3.3) and (3.4) 

r  '"+l) for m>~l (3.9) 

The solution (3.6) gives 

~ ( x ;  k) = a(x; k) (3.10) 

1 ( 1 1 )  l + ~ _ ~ x  x r k) = - ~ -  a(x;k) (3.11) 

1 1 1 [ ( e + k + k 2 ) _ 2 ( l + k ) l + l ] a ( x ; k )  

(3.12) 

By (3.10) and (3.9) with m = 1, we have 

a(x; k) = x + (9(x 2) (3.13) 

Assume that we can solve the equation a -- a(x; k) and obtain x as a func- 
tion of a and k. We consider the Laurent expansion of 1/x with respect to 
a a s  

1 
~/(k) a / (3.14) - - 3  

X / = - -  ,JJ 

and rewrite the RHS of Eqs. (3.10)-(3.12) as functions of a and k. Follow- 
ing (3.13), the condition (3.9) becomes 

r '''+j) for m>~l (3.15) 

By the condition (3.15) with m = 1 , 2 , 3 ,  we have cS~(k)=0 for l < - 2 ,  
~ _ t ( k ) = l ,  ~ o ( k ) = l + k ,  ~ t (k )=k ,  and d2(k)=~3(k)=0 .  This result 
suggests that 1/x = (1 + ka)( 1 + a)/a, or equivalently 

a 

x =  (3.16) 
(1 +ka)(1 + a )  
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If  we assume (3.16), we can write (3.6) as 

qS(x, y; k)= ay 
1 - a y  

45 

t i t  = I 

which satisfies the condi t ion (3.15). Then (3.16) is correct.  The  relation 
(3.16) gives a quadrat ic  equat ion  for a and is solved as 

a =  { 1 - (1 + k )  x___ [1 - 2 ( 1  + k )  x +  (1 - k )  2 x 2] u2}/(2kx) 

It  should be identified with the equat ion a = a(x; k) with (3.13). we conclude 

1 
a ( x ; k ) = ~  x { 1 - ( l  +k) x - [ l - 2 ( l  + k ) x + ( 1 - k ) 2 x 2 ]  '/2} (3.18) 

I t  is easy to confirm that  

a(x;k)= ~ F ( - ( n - 1 ) , - n ,  2;k)x" (3.19) 
/ l =  I 

where F(ogfl, y; z) is Gauss '  hypergeomet r ic  series defined as in (2.16). 
Then  (3.7) implies that  

oc, , .~=F(-(n-1),-n,  2;k) for n>_-I (3.20) 

Equa t ion  (3.1) with (3.3) gives 

k~,,.2=oc,,+ i. i - ( 1  + k )  0c,,. i (3.21) 

and 

k0c ...... +l=0C,,+l .... - - ( l + k )  0~ ...... --0c ....... I for m~>2 (3.22) 

Combin ing  (3.20) and (3.21) gives 

ct,,. 2 = (n - 1 ) F( - - (n  -- 2), --n,  3; k) (3.23) 

Therefore  we have proved  that  (2.15) is valid for m = 1 and 2. Fo r  m >/3, 
(2.15) can be p roved  by induction using (3.22). 

R e m a r k .  Bousquet-M61ou c~sl showed that  d,,. t(1) is the n u m b e r  of  
staircase animals ~18~ of  directed height n. The  fact that  (B.3) holds and 
a ( o )  ,t+l . . . . .  ~(k) is complete ly  determined by a t~ i(k) as in (B.4) means  that  It, m' ,  

(0 )  a ...... (1) given by (2.18) is the n u m b e r  of  the compac t  bond  animals  which 

~A 

= ~. a"y"' (3.17) 



46 Katori e t  al. 

have exactly m sites at the directed height n. These animals are closely 
related to c o n v e x  p o l y g o n s ,  which are defined as self-avoiding polygons 
whose number of steps equals the perimeter of their minimal bounding 
rectangle.t 19 2~ 

4. A P P L I C A T I O N S  A N D  R E M A R K S  

We performed direct calculations of P ...... (q; k) in order to check (2,15) 
numerically and demonstrate how to extend the series of percolation prob- 
ability using the correction term formula (2.12). In comparison with the 
calculations by Baxter and Guttmann ~ and Jensen and Guttmann ~t-'~ of 
P, , (q)  for the ordinary directed-bond percolation, much more memory 
storages are needed for the present calculation. The reasons are as follows: 
(i) We consider the probabilities P ...... (q; k) having m "particles" at the nth 
level for every m~{  1, 2 ..... n} instead of only considering their sum 
P, , (q;  k ) =  Z',',,= ~ P ...... (q; k). (ii) For  the ADBP, the coefficients a ....... i(k) in 
the series P ...... (q; k) are not numbers, but polynomials of k, which have at 
most n terms, We have obtained P ...... (q; k) up to n = 12 using M a t h e m a t i c a  

and the result directly determines the first 12 terms of the series for the per- 
colation probability. Compared to the 39-term series for the symmetric case 
by Jensen and Guttmann I~'-I, our series for the ADBP is relatively short, In 
order to obtain longer series, we have to make some special programs as 
reported in the previous papers for the symmetric case. ~ 12~ Moreover, in 
order to calculate the polynomials a ....... i(k) correctly, new algorithms are 
required; e.g., first we calculate values of a ....... i(k) for sufficiently many but 
finite number of values of k and then determine the coefficients of power 
series of k by solving simultaneous linear equations. In the present paper, 
however, we report the results only using the data up to n = 12 and leave 
higher order calculation as a future problem, since the main purpose of the 
paper is to show that the hypergeometric series appears in series expan- 
sions for the ADBP and that it leads as a special case to the appearance 
of the Catalan numbers in the correction terms for the symmetric case. 

We determined the coefficients ~"~ a ...... (k) of (2.10) up to n =  12 and 
found that all results for s = 0  satisfy (2.15). Let 

P,,(q;k)= ~ a,,.,(k) q i (4.1) 
i>~O 

Lemma 1 implies that P, , (q;  k )  converges to a limit P ~ ( q ;  k )  in n --* ~ as 
a formal power series of q. Let 

P ~ ( q ;  k) = ~,, a,,(k) q" (4,2) 
s~ ~>0 
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T h e n  L e m m a  1 a l so  s t a t e s  t h a t  a, , (k)  = a,, . , ,(k) Vn i> 1 a n d  t h u s  o u r  d i r e c t  

c a l c u l a t i o n  d e t e r m i n e s  a i ( k )  for  i =  1-12.  S ince  we  h a v e  {ati~. , , , (k)} ,  t h e  

c o r r e c t i o n  t e r m s  d , , . / (k)  c a n  be  o b t a i n e d  for  n = 12 b y  (2.13) .  I n  p a r t i c u l a r ,  

we see t h a t  

d,2. ,( k ) = ka~ ~ ,( k ) 

= k + 6 6 k  2 + 1210k  a + 9 0 7 5 k  4 + 3 2 6 7 0 k  5 + 6 0 9 8 4 k  6 

+ 6 0 9 8 4 k  7 + 3 2 6 7 0 k  8 + 9 0 7 5 k  9 + 1210k  I~ + 66k  II + k 12 (4 .3)  

a n d  

dr,_. ,_( k ) = k a ~  , ( k ) + k2a~~ 2(k) 

= - 1 l k  2 - 4 4 0 k  3 - 5 4 4 5 k  4 - 2 9 0 4 0 k  5 - 7 6 2 3 0 k  6 - 104544k  7 

- 7 6 2 3 0 k  8 - 2 9 0 4 0 k  9 - 5 4 4 5 k  to _ 4 4 0 k  t l _ 1 l k  12 (4 .4)  

T h e  f o r m u l a  (2 .12)  a n d  d e f i n i t i o n  (4.1)  g ive  t h a t  

a t 3 ( k )  = a13. 13(k) 

=aj2. t3(k)--dl2, l(k) 
= - k -  1 l k  2 - 9 1 k  3 - 4 3 9 k  4 -  1276k  5 - 2 1 8 5 k  6 

- 2 1 8 5 k  7 -  1276k  8 - 4 3 9 k 9 -  91k  l ~  l l k  II - k  12 (4 .5)  

a n d  

at3.  14(k) = at2" 14(k) - -  d12 .2 (k )  

= 66k  2 + 1605k  3 + 15116k  4 + 6 8 6 6 6 k  5 + 16541 l k  6 -t- 2 2 0 7 4 6 k  7 

+ 16541 l k8  + 68666k9  + 15116k~~ + 1605k  ~ + 6 6 k  ~2 (4 .6)  

N o w  we use  C o r o l l a r y  4. I t  g ives  

d13 ' l (k )  = k F (  - 12, - 13, 2, k )  

= k + 78k  2 + 1716k  3 + 15730k  4 + 7 0 7 8 5 k  5 + 169884k  6 

+ 2 2 6 5 1 2 k  7 + 169884k  8 + 7 0 7 8 5 k  9 + 15730k  ~~ 

+ 1716k  al + 78kl2  + k l 3  (4 .7)  

822/86/I-2-4 
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and we have 

a14(k) =a14,14(k) 

=a13.14(k)-dt3.  t (k)  

= - k -  12k 2 -  l l l k  3 - 6 1 4 k 4 - 2 1 1 9 k  5 - 4 4 7 3 k  6 -  5766k 7 

- 4 4 7 3 k S - 2 1 1 9 k  9 - 6 1 4 k  j~ _ l l l k  It _ 12k 12 _ k  13 (4.8) 

Thus we have extended the series (4.2) by two terms. The results are sum- 
marized in Table I. 

Using the obtained series, we estimated the critical value q,.(k) and the 
critical exponent fl of percolation probability for several k by the Dlog  
Pad6 approximationsJ 9' ~2~ The results are shown in Table II. It is shown 
that q,.(k) decreases monotonically in k, while fl does not depend on k for 
0 < k <  1. The estimated values for fl are very close to the value 
fl = 0.27643_ 0.00010 by Jensen and Gut tmann using a long series for the 
symmetric case k = 1. c ~2~ The present analysis strongly suggests that asym- 
metry does not change the critical exponent ft. It should be noted that 
Martins et al. ~2~-~ reported that they estimated the critical exponent by 

Table I. The Numbers c . . .  in the Polynomials a,,(k)=Z.~>0 c,,., kr for the 
Coeff icients in the Series Expansion P(q; k ) =  T-.>~o a,,(k) q" for the 

ADBP on the Square Lattice 

Cn.r 

n 0 I 2 3 4 5 6 7 8 9 10 I1 12 13 

0 1 
I 0 
2 0 -I  
3 0 - I  - I  
4 0 -1 -2 -1 
5 0 -1 -3 -3 
6 0 - I -4 -7 
7 0 -1 -5 13 
8 0 -I  -6 -21 
9 0 -1 -7 31 

10 0 -1 -8 -43 
I1 0 - I  -9 -57 
12 0 - I  -10 -73 
13 0 - I  I1 -91 
14 0 I -12 - I I1  

- I  
-4 - I  

-13 -5 I 
-32 -21 -6 - I  
-66 -66 -31 -7 -1 

-119 -169 -119 -43 -8 
-196 -369 -369 -196 -57 
-301 -718 -959 -718 -301 

-1 
-9 - I  
73 -10 -1 

-439 -91 - I  1 - I  -439 -1276 -2185 -2185 -1276 
-614 -2119 -4473 -5766 -4473 --2119 -614 - I I I  -12 - I  
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Table II. Critical Values qc(k) and Critical Exponents 13 for 
Several k Estimated by the D log Pad6 Approximations 

4 9  

q~ P 

k [7/6] [6/7] [6/6] [7/6] [6/7] [6/6] 

0.01 0.9687 0.9687 0.9687 0.2777 0.2776 0.2776 

0.1 0.7814 0.7816 0.7817 0.2760 0.2778 0.2787 

0.2 0.6644 0.6650 0.6647 0.2764 0.2777 0.2791 

0.3 0.5868 0.5869 0.5872 0.2765 0.2776 0.2796 

0.4 0.5301 0.5302 0.5308 0.2766 0.2774 0.2710 

0.5 0.4861 0.4861 0.4858 0.2769 0.2772 0.2818 

0.6 0.4506 0.4506 0.4505 0.2772 0.2772 0.2746 

0.7 0.4210 0.4210 0.4210 0.2774 0.2777 0.2771 

0.8 0.3960 0.3963 0.3960 0.2776 0.2782 0.2776 

0.9 0.3743 0.3739 0.3743 0.2777 0.2686 0.2777 

1.0 0.3554 0.3555 0.3554 0.2777 0.2723 0.2778 

Table III. Correction Terms d,,j(k) for Small n and I 

d,,j(k) 

n / =  1 / = 2  / = 3  

1 k 0 0 
2 k + k  2 - k  2 - k ' - - - k  3 

3 k + 3 k 2 + k  ~ - 2 k 2 - 2 k  3 - 3 k Z - 6 k 3 - 3 k  4 

4 k + 6 k ' - + 6 k 3 + k  4 - 3 k 2 - 8 k ~ - 3 k  "~ - 6 k Z - 2 2 k 3 - 2 2 k ' ~ - 6 k  5 

5 k+lOk2+2Ok3+lOk4+k 5 - 4 k  2 -10k  3 - 1 0 k 4 - 4 k  5 - l O k - ' - 6 6 k  3 -100k4-66k  5-10k  6 

d,,.t(k) 

n 1=4 / = 5  

I 0 0 
2 k 3 0 
3 5k3+5k 4 3 k 3 + 4 k 4 + 3 k  5 

4 13k3+28k4+13k 5 13k3+38k4+38kS+13k 6 
5 27k3+98k4+98kS+27k  ~ 35k~+165k4+262kS+165k6+35k  7 
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Monte  Car lo  s imulat ion as f l =  0.5 +__ 0.02 for the asymmetr ic  D o m a n y -  
Kinzel  Cellular au tomata .  Al though we could not  find the details of  their 
est imation,  our  result contradicts  their value. 

Finally we make  one more  remark.  Fo r  the symmetr ic  case k = 1, 
Bousquet-M61ou 1151 proved  that  the second correct ion t e rm d,,.2 is also 
expressed by the Cata lan  numbers  as in (1.3). In the previous paper ,  I tTI we 
proved  that  not  only the _~o~ but  also the a ~ are expressed using ballot  

1"~ l l ,  IH t~, m 

numbers  as (1.8). Table  I I I  shows correct ion terms d,,.~(k) for small n and 
1 obta ined  by direct calculations. We find that  the following relat ion holds 
for any n up to n = 12: 

d,. _,(k) = ( 1 + k) d,,. l(k) -- d,  + I. i(k) (4.9) 

Al though we have not  yet p roved  this formula,  it is plausible, since it 
becomes the second equat ion  of  (1.3) in the limit k - -  1. The  intrepid reader  
could a t t empt  to guess the formulas  for subsequent  correct ion terms using 
Table  III .  I t  is a challenging p rob l em to prove  them and show that,  for 
0 < k <  1, d, , l (k)  with 1~>2 and m a ...... (k) with l>~ 1 are also expressed by 
using Gauss '  hypergeometr ic  series. 

A P P E N D I X A .  PROOF O F L E M M A  1 

We consider the A D B P  on V ~ Fo r  a given bond  conf igurat ion on B, ,  
n >~ 2, define a set of  integers 

A ~ = {x e Z: (x, n - 1 ) e ~,, and (x, n - I) is corrected to(0,  0)} (A.1) 

For  the convenience,  we define V ~ 1 7 6  {0}. If  we write the n u m b e r  of  
elements in a set S as ISI, then [A~ = 1 and IA,~ = JI/~, for n ~> 2, where Y,,, 
is defined by (2.2). Let  Z, .=  { .... - 4 ,  - 2 ,  0, 2, 4,...} and Z o =  { .... - 3 ,  - 1 ,  
1, 3,...}. By definition, A ~ c Z , .  if n = odd and A, ~ c Z o  if n = even. If  
x, y e A ~ and I x -  Yl = 2, we say that  x and y are adjacent.  We say also 
tha t  a sequence of adjacent  sites in A,~ { l + 1, l + 3 ..... r - 3, r - 1 }, makes  
a cluster if l -  1 ~A,  ~ and r +  1 r A,~ I t  is noted that  a single site {x} can 
make  a cluster when x e A  ~ but  x - 2 r 1 7 6  and x + 2 r  ~ We can write 
A _ _ U k =  1 0  __ ," A,,.~~ where A,~ k = { lk + 1, lk + 3 ..... rk - 3, r~. - 1 }, k = 1, 2 ..... c, 
are clusters of  which A ~ consists. The  n u m b e r  of  clusters character izes  A, ~ 
and is denoted by c(A~ It7) 

Let Y, be the collection of  all subsets of  { - n +  1 , - n + 3 , . . . ,  
n - 3, n - 1 }, n >/1. Fo r  B e Y,,, we have 

P(A ~ = B) = ~. a,. s. ,(k) q' (A.2) 
i > ~ O  
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where {a,,.B.;(k)} are polynomials of k. Define the indicator function 
ll,,l as 11,,1=I if co is true, = 0  otherwise. Since P ...... ( q ; k ) =  
Z t ~ r ,  lllsl .... IP(A~ Lemma 1 follows once we prove the next 
lemma. 

Lemma A.1. For B e  Y,, with [BI ~> 1, 

a,,.e.i(k)=O if i 4 n - l B [ -  1 (A.3) 

In this Appendix, we will prove Lemma A.1 by induction with respect 
to n. 

When n = l ,  P ( A ~  by definition, for which (A.3) is 
correct. We assume that (A.3) holds for n = N~> 1. In other words 

o ) =  N.B( )q 7 -  P ( A N = B  a ~~ k _ N  . . . .  ' - - ( 9 ( q N  . . . .  ' + 1 )  

for B e  Y,, with m '=IBI ,  where 
following formula. 

10) aN. e(k) = aN. t~. ,v-,,'(k). 

(A.4) 

We use the 

BE YA' 

when C e  Y,v+~ and qu(C, B) is the conditional probability 

0 qN( C, B) = P(A ~ +, = CIA u = B) (A.6) 

Now we study qu( C, O). Assume that IBI = m'~> 1, c(B)= c', I CI = m, 
and B =  U~'=, Bk, where Bk= {lk + 1, lk + 3  ..... rk--3, r k -  1}, k =  1, 2 ..... c', 
are the clusters of B. Let 

/~k = {lk +2 ,  lk + 4,..., r~. --4, r k --2} 

/~a. = { lk, lk + 2 , . . . ,  r k - -  2 ,  rk} 

and 

c' 

~=  B~, B= U ~ 
k = l  k = l  

We classify qx(C, B) according to the value Am = m -  m'. By the construc- 
tion of the ADBP, we have the following results. 

(1) z i m > c ' : q N ( C , B ) = O .  

o P ( A N + , = C ) =  Y" qN(C,B)  P ( A ~  (A.5) 
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(2) 

(3) 

A m  = c': 

0 <~ A m  < c': if C can be written as 

\(o ) C-- /}  { l ( ,}u O {G} 

wi th  I ~<i~ < i 2 <  " "  < i . < ~ c '  

and 1 ~<j, < J 2 <  "'" <Jl,<~ c' 

if C = B  

otherwise 

where is :/: Jl for any pair  (s, l) and a + b = c' - A m  (A.7) 

then q.v( C, B ) = k~' q+ - A'" + (9( q '' - A'' + ~ ), otherwise q N( C, B ) = (9(r - A,,, + t ). 

(4) - c ' < d m ~ <  - 1 :  if C can be written as 

+ ,) c = ~  {t,,} u {,:j., 
.~" I s = l  

with 1 ~<il < i ~ <  --- <i, ,<~c'  

and 1 ~<Jt < j 2 <  ..- < j b < ~ c  ' 

w h e r e i . , . ~ j t f o r a n y p a i r ( s , l )  a n d a + b = c '  + d m  (A.8) 

then q N( C, B) = k e ~ bq,:, - ~,,, + O(q" -'+" + t ), otherwise q N( C, B) = (9(q" - ~"' + 1 ). 

(5) A m = - c ' :  

q N ( C , B ) = ~ k C ' q " "  + ( 9 ( q  2c'+j ) if C = / ~  
~ ( 9 ( q 2 , . '  + 1) otherwise 

(6) d m < - c ' :  

- - d m  --2 Am --2  A m +  I 
B , _ ( k  q + ( 9 ( q  ) if Cm/~  

q,v(C, ) -  1.(9(q-2~,,,+1) otherwise 

Under  the assumption (A.4), we find, for a given B �9 Y,, with m' = IBI and 
c ( B ) = c ' ,  

q N ( C , B )  P ( A ~  al~ 8(k)  -N't . . . .  +c" + (9(qN .... +c'+1 ) (A.9) 
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with 

Q( C, B; k) = 

1 if C = B  
k h if O<~,dm<c'  

and C is written in the form (A.7) 

k ' ' - h  if - c ' < , d m < ~ - I  

and C is written in the form (A.8) 

k c' if C = B  

0 otherwise 

(A.IO) 

where zlm = m - m' with m = I CI. The degree N - -  m + c' is minimized when 
c ' =  1. 

Assume that  c ' = l .  Then B is written in the form B = { I +  1, 
l + 3,..., r - -  1 } and we conclude that  

qu( C, B) P(A  ~ u = B) = Q_.( C, B; k)  a~.'e(k) q ( N  + , ) . . . .  -I- (9(q(N+ ' I . . . .  + , )  

(A.11) 

with 

if C = { I , l + 2  ..... r } o r { l + 2 ,  l + 4  ..... r} 

if C = { l , l + 2  ..... r - 2 }  o r { 1 + 2 ,  l + 4  ..... r - 2 }  (A.12) 

otherwise 

Since (A.5) holds, this completes the p roo f  of  Lemma A.1. 

A P P E N D I X B .  DERIVATION OF THE DIFFERENCE EQUATION 

Define 

P ........ .(q; k) = P( IA',I I = m, c(a ~ = c) (B.I)  

Since P ........ .(q; k) = ~ 8 ~  ~;, 111n~ . . . . . .  . ~ =  ,-I P(A~), = B), L emma  A.1 gives 

P ........ .(q; k)  = q ...... ~. a',;~',,,. ,,(k) qS (B.2) 
x~>0 

i fm/>  1, where the coefficients {afT),,,, ,.(k)} are expressed by {a,. n. i(k)} with 
[nl = m and c ( B ) =  c. In the p roof  of  Lemma A.1 given in Appendix A, we 
showed that, for B =  { l +  1 , / + 3  ..... r -  1}, q,,(C, B) P ( A ~  has a term in 
the degree ql,,+ i i .... if and only if c' = c(B) = 1 and C s ~qC(B) = { ~ , /~  w { l}, 
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/~w {r}, B}, otherwise it has only terms in higher order ofq. Since c ( C ) =  I 
for C e d ( B ) ,  a ~~ c ( k ) ~ O  i f f c =  1 for m~> 1. By the definitions (2.3) and 

n ,  1~1, 

(B.1), Z,.~>IP ........ ( q ; k ) = P  ...... (q;k)  and P~ ...... ( q ; k ) = l (  .... t,,,=l}. Thus 
we have an important result, 

( o )  _ _ ( o )  a ...... ( k )  - ,,,.,,,. l ( k )  for m ~> 1 (B.3) 

a ~~ the formula (A.5) and the Since ,,,,̂ ~~ J(k) =ZB~ r, l/iB I =,,,. ,.~BI= t I ,,.8~ ,, 
result (A.11) with (A.12) in Appendix A give that 

a~O) t . l ( k ) _  ~o~ l ( k ) + ( l + k )  10~ ,,+,. - k a , , . 2 .  a , , . i . , ( k )  

to~ _ _lo~ - t -  ~lol , (k )  - k u  ...... +t. a ....... i (k )  - "  . . . . . . .  i. a,,+l ..... ,(k) i ( k ) + ( l  + k )  (o~ 

for 2 <~ m <<. n - 1  

a~Ol i(k) =(1 + k )  ~lol l ( k ) + a ( O l  i (k )  
11 "1- | ,  I I .  q'J I I ,  I t ,  n .  l !  - -  | ,  

alO~ t. t(k) - _lo~ i(k) (B.4) 
n + I ,  n +  - -  ~ n .  n.  

and 

a,?,,,. (B.5) 

Combining these equations with (B.3) gives the difference equation (3.1) 
with (3.2) and (3.3). 
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